值得收藏!细说弧焊机器人的构成(二)
四、弧焊系统说明
弧焊过程比点焊过程要复杂得多,工具中心点(TCP),也就是焊丝端头的运动轨迹、焊枪姿态、焊接参数都要求**控制。所以,弧焊用机器人除了前面所述的一般功能外,还必须具备一些适合弧焊要求的功能。
从理论上讲,5轴机器人就可以用于电弧焊,但是对复杂形状的焊缝,用5个轴的机器人会有困难。因此,除非焊缝比较简单,否则应尽量选用6轴机器人。
弧焊机器人在作“之”字形拐角焊或小直径圆焊缝焊接时,其轨迹应能贴近示教的轨迹之外,还应具备不同摆动样式的软件功能,供编程时选用,以便作摆动焊,而且摆动在每一周期中的停顿点处,机器人也应自动停止向前运动,以满足工艺要求。此外,还应有接触寻位、自动寻找焊缝起点位置、电弧跟踪及自动再引弧功能等。
五、调试中电弧焊电流
调试中电弧焊电流大小的判断:
1、电流小:
焊道窄,熔深浅,易形成过高,未熔合,未焊透,夹渣,气孔,焊条粘连,断弧,不引弧等等;
2、电流大:
焊道宽,熔深大,咬边,烧穿,缩孔,飞溅大,过烧,变形大,焊瘤等等。
六、离线编程
弧焊机器人系统多采用离线编程
▼
离线编程可节省超过40%的现场调试时间,如果再结合Virtual Arc等虚拟弧焊软件,可以根拒焊接电流,焊丝,焊接速度,脉冲形式,机器人姿态等模拟出焊接熔深,提前预知焊接状态,减少大量的调试工作,提高整个机器人焊接系统的节拍及质量。
七、系统的两个技术
弧焊机器人系统两个关键技术:
1、协调控制技术:
控制多机器人及变位机协调运动,既能保持焊枪和工件的相对姿态以满足焊接工艺的要求,又能避免焊枪和工件的碰撞,还要控制各机器人焊接区域的变形影响。
2、**焊缝轨迹跟踪技术:
结合激光传感器和视觉传感器离线工作方式的优点,采用激光传感器实现焊接过程中的焊缝跟踪,提升焊接机器人对复杂工件进行焊接的柔性和适应性,结合视觉传感器离线观察获得焊缝跟踪的残余偏差,基于偏差统计获得补偿数据并进行机器人运动轨迹的修正,在各种工况下都能获得*佳的焊接质量。
八、焊接电源
1、焊接电源
熔化极气体保护焊通常采用直流焊接电源,目前生产中使用较多的是弧焊整流器式直流电源。近年来,逆变式弧焊电源发展也较快。焊接电源的额定功率取决于各种用途所要求的电流范围。熔化极气体保护焊所要求的电流通常在100~500A之间,电源的负载持续率(也称暂载率)在60%~100%范围,空载电压在55~85V范围。
2、焊接电源的外特性
熔化极气体保护焊的焊接电源按外特性类型可分为三种:平特性(恒压)、陡降特性(恒流)和缓降特性。
(1)平特性
当保护气体为惰性气体(如纯Ar)、富Ar和氧化性气体(如CO2),焊丝直径小于φ1.6mm时,在生产中广泛采用平特性电源。这是因为平特性电源配合等速送丝机具有许多优点,可通过改变电源空载电压调节电弧电压,通过改变送丝速度来调节焊接电流,故焊接规范调节比较方便。使用这种外特性电源,当弧长变化时可以有较强的自调节作用;同时短路电流较大,引弧比较容易。实际使用的平特性电源其外特性并不都是真正平直的,而是带有一定的下倾,其下倾率一般不大于5V/100A,但仍具有上述优点。
(2)下降特性
当焊丝直径较粗(大于φ2mm),生产中一般采用下降特性电源,配用变速迭丝系统。由于焊丝直径较粗,电弧的自身调节作用较弱,弧长变化后恢复速度较慢,单靠电弧的自身调节作用难以保证稳定的焊接过程。因此也象一般埋弧焊那样需要外加弧压反馈电路,将弧压(弧长)的变化及时反馈送到送丝控制电路,调节送丝速度,使弧长能及时恢复。
3、电源输出参数的调节
熔化极气体保护焊电源的主要技术参数有:
(1)输入电压(相数、频率、电压)
(2)额定焊接电流范围
(3)额定负载持续率(%)
(4)空载电压
(5)负载电压范围
(6)电源外特性曲线类型(平特性、缓降外特性、陡降外特性)
通常要根据焊接工艺的需要确定对焊接电源技术参数的要求,然后选用能满足要求的焊接电源。
(1)电弧电压
电弧电压是指焊丝端头和工件之间的电压降,不是电源电压表指示的电压(电源输出端的电压)。电弧电压的预调节是通过调节电源的空载电压或电源外特性斜率来实现的。平特性电源主要通过调节空载电压来实现电弧电压调节。缓降或陡降特性电源主要通过调节外特性斜率来实现电弧电压调节。
(2)焊接电流
平特性电源的电流的大小主要通过调节送丝速度来实现,有时也适当调节空载电压来进行电流的少量调节。对于缓降或陡降特性电源则主要通过调节电源外特性斜率来实现。
了解更多机器人资讯:弧焊机器人
- 下一篇:工业4.0,你是否落后于人
- 上一篇:值得收藏!细说弧焊机器人的构成(一)